Linear Equations of Proportional Relationships – Homework 2

Example: Kelly sold burgers over two days. Create a graph to determine if the quantities of burgers and number of days are proportional. Write an equation to describe this relationship.

<table>
<thead>
<tr>
<th>Number of Burgers</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>

Step 1: Linear functions are written in the form y = mx + b.

Step 2: First find m. Look at the table and notice that every time the x terms go up by 1, the y terms go up by 8. This means that m is equal to 8.

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>

Answer: Y = 8x

Complete the following problems:

1. Kelly purchases some pencils over several days. Write an equation to express the relationship between days and number of pencils.

<table>
<thead>
<tr>
<th>Days</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Pencils</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

2. The table below represents the number of pages written over time. Write an equation to express the relationship.

<table>
<thead>
<tr>
<th>Hours</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of pages</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

Tons of Free Math Worksheets at: © www.MathWorksheetsLand.com
Homework 2 Answer Key

1. Step 1: Linear functions are written in the form \(y = mx + b \).

 Step 2: First find \(m \). Look at the table and notice that every time the \(x \) terms go up by 5, the \(y \) terms go up by 1. This means that \(m \) is equal to 5.

 | \(x \) | 1 | 2 | 3 | 4 |
 | \(y \) | 5 | 10 | 15 | 20 |

 Step 3: Next find \(b \). Take the equation \(y = mx + b \) and plug in the \(m \) value (\(m = 5 \)) and a pair of \((x, y)\) coordinates from the table, such as \((1, 5)\). Then solve for \(b \).

 \[
 Y = mx + b \\
 5 = 5 (1) + b \\
 5 = 5 + b \\
 b = 0
 \]

 Plug in \(m = 5 \), \(x = 1 \), and \(y = 5 \)

 Step 4: Finally, use the \(m \) and \(b \) values you found (\(m = 5 \) and \(b = 0 \)) to write the equation.

 \[
 Y = mx + b \\
 Y = 5x + 0 \\
 Y = 5x
 \]

 So, the linear equation is \(y = 5x \).

2. Step 1: Linear functions are written in the form \(y = mx + b \).

 Step 2: First find \(m \). Look at the table and notice that every time the \(x \) terms go up by 2, the \(y \) terms go up by 4. This means that \(m \) is equal to 2.

 | \(x \) | 2 | 4 | 6 | 8 |
 | \(y \) | 4 | 8 | 12 | 16 |

 Step 3: Next find \(b \). Take the equation \(y = mx + b \) and plug in the \(m \) value (\(m = 2 \)) and a pair of \((x, y)\) coordinates from the table, such as \((2, 4)\). Then solve for \(b \).

 \[
 Y = mx + b \\
 4 = 2 (2) + b \\
 4 = 4 + b \\
 b = 0
 \]

 Plug in \(m = 2 \), \(x = 2 \), and \(y = 4 \)

 Step 4: Finally, use the \(m \) and \(b \) values you found (\(m = 4 \) and \(b = 0 \)) to write the equation.

 \[
 Y = mx + b \\
 Y = 2x + 0 \\
 Y = 2x
 \]

 So, the linear equation is \(y = 2x \).